
September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center PLASMA

Plan State Management Architecture

A Planning and Scheduling
Component Library

for
NASA

Missions and Research
Team & Contributors

Andrew Bachmann, Tania Bedrax-Weiss, Patrick Daley, Will Edgington, Jeremy Frank, Michael
Iatauro, Ari Jonsson, Conor McGann (PI), Paul Morris, Sailesh Ramakrishnan, Will Taylor

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

PLASMA Motivation

NASA needs
• To solve large class of problems relevant to space exploration
• Requires wide variety of planning algorithms
• Requires advanced inference for many classes of constraints
• Requires integration into a wide variety of applications/architectures

Technology Components
• A powerful modeling language – to describe the problem domain
• A robust and powerful Plan Database – enforce plan consistency and infer

consequences of plan modifications
• A Planner Application Framework – support integration

Benefits
• Increase capabilities of mission and research applications
• Reduce development cost and risk
• Encourage technology transfer through common infrastructure

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

A Variety of Uses
Applications

Missions
• DS1: RAX – Remote Agent Experiment (original version of technology) ‘99
• Life in the Artacama (LITA) Desert Rover ‘04
• MER - Mars Exploration Rover Science Planning Tool ‘03-04

Mission-oriented research
• Earth-observing satellite scheduling project (EOS)
• SOFIA flight scheduling project (SOFIA)
• Contingent Planning for Mars rover operations
• Personal Satellite Assistant (PSA)
• Spoken Interface Prototype for PSA
• Space Interferometry testbed (SIM)

Research
• Intelligent Deployable Execution Agent (IDEA)
• LORAX Rover Power budgeting

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Abstract Application Architecture

Search
Engine

Initial State

Plan

Plan Database

Planner

Heuristics

Model

Application

External
File

Data flow

LEGEND

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Plan Representation

Flexible Time Intervals have Flexible Start, End and Duration
Parameterized Predicates describe actions and states
Token is a Parameterized Predicate over a Flexible Time Interval
Constraints defined between Tokens, Time Points, Parameters
Timelines enforce temporal mutual exclusion over an object

Camera

Attitude

 off

 pointAt Sun

Engine thrusting Hi

 takePic ?Target

 off

 ready

 pointAt ?Target2

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Insert takePic

Camera

Attitude

 off

 pointAt Sun

Engine thrusting Hi

?Target

Unscheduled subgoals

Sun Moon Star

Unbound Variables/Values

 takePic ?Target

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Expand takePic subgoals

 ready pointAt ?Target2

Camera

Attitude

 off

 pointAt Sun

Engine thrusting Hi

 takePic ?Target

 offSun Moon Star

Unbound Variables/Values Unscheduled subgoals

?Target ?Target2

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Insert off

 ready pointAt ?Target2

Camera

Attitude

 off

 pointAt Sun

Engine thrusting Hi

 takePic ?Target

 off

Sun Moon Star

Unbound Variables/Values Unscheduled subgoals

?Target ?Target2

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Plan Database: how it works

A Domain Model:
• defines parts of the plan
• defines necessary relationships among them for valid plans

The Plan Database :
• maintains current plan
• maintains mapping between plan and constraint network
• supports plan modification and constraint inference

The Planner:
• checks status of current plan
• decides how to modify the plan

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Sample Model

Camera::TakePic{
 // Attitude must be constant throughout
 contained_by(Attitude.pointAt at);
 eq(at.location, rock);

// Engine must be off throughout
contained_by(Engine.off o);

 // Preceded by readying operation
 met_by(Ready r);

 // Succeded by stowing the instrument
 meets(Stow c);
}

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Handling Heterogeneous
Constraints

Distinguished constraint classes
Generic, Temporal, Equivalence classes, Resources

Rules engine
Adds and removes constraints

Triggering propagation via events
Scheduling of execution can be defined by user

Choose next
 constraint

Enforce
Constraint

Eq. Class 1

Resource 2

STN 3Eq. Class 2

Resource 4 STN 7

Less-Than 2

Assign
VariableAdd Constraint

STN 7

Scheduler

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

PLASMA Customizability

Create new constraints, variables, tokens, objects
Concept hierarchy supports customization (e.g. resource extends object)

Change rules governing legal plans
e.g. Temporal flexibility vs timestamped sequences

Change order of domain rule enforcement
e.g. Before or after tokens inserted on objects

Change scheduling constraint enforcement
e.g. Resources before or after Temporal

Customize planner search
e.g. flaws and decision management

Change event model and event handling
Custom Logging

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Example: Rover Rock Sampling

9

8

7

6

5

4

3

2

1

0

9876543210

Task for Spirit this next Sol:
1. Start at Lander.
2. Take Rock Sample at (3, 9)
3. Communicate: Direct or via Lander
4. Battery charge initially 1000

Path 1: -2000

Path 2: -1500Path 3: -400

Direct: -600
Lander: -40

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Objects with and without Tokens

Rock name(rock4)

x(3)

y(9)

Object Member Variables (Static w.r.t. Time)

Navigator

Object

At(lander) Going(lander, rock4) At(rock4)

Member Variables (Variable w.r.t. Time)

Instrument

Object

Stowed

Member Variables (Variable w.r.t. Time)

Unstow Place(rock4) TakeSample(rock4)

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Object - Token Relationships

Object

Object

Token

Token

canBeAssigned (m:n)

isAssigned (1:n)
hasA (1: n)

supports (1: n)
parentOf (1: n)

canBeMerged(m:n)

Constrained
Variable

Constraint

hasA (1: n) hasA (1: [4, n])

constrainedBy (m: n)

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Token State Transition Model

INCOMPLETE

INACTIVEACTIVE REJECTED

MERGED

Close (Typically an internal decision)

(Typically an internal state)

Reject

Reinstate

Merge Split

Activate

De-activate

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

Flaw/Decision Model

Variable Decisions (resolve unbound variables):
•Specify (var, val) / Reset (var)

Token Decisions (resolve inactive tokens):
• Activate(Token t) / Deactivate(Token t)
• Merge (Token t1, Token t2) / Split(Token t1)
• Reject(Token t1) / Reinstate (Token t1)

Object Decisions (resolve when Object hasTokensToOrder):
• Constrain(Object o, Token t) / Free(Token t)
• Constrain(Object o, Token t1, Token t2) / Free(Token t1)

September 30 2004 10th Intl. Conference on Constraint Programming

Ames
Research
Center

PLASMA
Framework & Components

PlanDatabase

Constraint
Engine

Rules
Engine

Schema

AbstractDomain

Domain
Listener

Constrained
Variable

Constraint

Propagator

Token

Object
Timeline

Resource
IntervalToken

EventToken

Resource
Transaction

Default
Propagator

Eq. Class
Propagator

Resource
Propagator

STN
Propagator

AddEqual

Flaw
Management

Specialized
Variables

Specialized
Domains

Concurrent

